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Abstract
Background In non-small cell lung cancer (NSCLC), the rapid advancement of predictive genetic testing of tumors 
by identifying specific pathogenic driver variants has significantly improved treatment guidance. However, immune 
checkpoint blockade (ICB) is typically administered to patients with tumors in the absence of such driver variants. 
Since only about 30% of patients will respond to ICB treatment, identifying novel genetic biomarkers of clinical 
response is crucial and will improve treatment decisions. This prospective clinical study aims to combine molecular 
biology, advanced bioinformatics and clinical data on response to treatment with ICB from a prospective cohort 
of NSCLC patients to identify single or combination of genetic variants in the tumor that can serve as predictive 
biomarkers of clinical response.

Methods In this prospective bi-center clinical study, we performed next-generation sequencing (NGS) of 597 
cancer-associated genes in a prospective cohort of 49 patients as the final cohort analyzed, with stage III or IV NSCLC, 
followed by establishment of an in-house developed bioinformatics-based molecular classification method that 
integrates, interprets and evaluates data from multiple databases and variant prediction tools. Overall survival (OS) 
and progression-free survival (PFS) were analyzed for selected candidate genes and variants identified using our novel 
methodology including molecular tools, databases and clinical information.

Results Our novel molecular interpretation and classification method identified high impact variants in frequently 
altered genes KRAS, LRP1B, and TP53. Analysis of these genes as single predictive biomarkers in ICB-treated patients 
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Background
In the era of precision medicine, the identification of spe-
cific molecular variants in tumors as biomarkers of clini-
cal response can guide individualized treatment options. 
In non-small cell lung cancer (NSCLC), there has been 
rapid development of targeted treatments and predic-
tive genetic testing as tools to guide treatment through 
the identification of specific pathogenic driver variants 
(also defined as driver mutations). Currently, tumor tis-
sue is analyzed mainly with next-generation sequencing 
(NGS) for activating pathogenic variants or rearranged 
fusion oncogenes in EGFR, ALK, BRAF, MET (exon 14 
skipping), KRAS, ROS1, RET and NTRK. However, only 
approximately 50% of patients have a targetable patho-
genic DNA variant [1], and for patients without access 
to targeted first line treatment including patients with 
pathogenic KRAS variants, chemotherapy, immune 
checkpoint blockade (ICB), combined chemotherapy and 
ICB or combined ICB are the main treatment options [2].

Currently, programmed death-ligand 1 (PD-L1) expres-
sion is the standard predictive biomarker for response 
to ICB therapy for NSCLC patients without targetable 
pathogenic DNA variants [3]. PD-L1 expression in tumor 
tissue is estimated via immunohistochemistry and for 
most indications evaluated as the tumor proportion 
score (TPS) [4]. Patients with high PD-L1 expression 
(≥ 50%) have a higher probability of responding to ICB 
monotherapy compared to patients with low (1–49%) 
or negative (< 1%) PD-L1 expression [5, 6]. However, the 
accuracy of PD-L1 expression as an individual prediction 
tool is debated since PD-L1-negative patients have been 
reported to be responders to ICB [7, 8]. Along these lines, 
a recent meta-analysis of five randomized controlled tri-
als with monotherapy of pembrolizumab (PD-1 block-
ade) showed significantly improved overall survival (OS) 
compared to chemotherapy also for patients with PD-L1 
TPS < 1% [9].

At present, patients with stage IV disease can be 
treated with ICB monotherapy if PD-L1 is expressed 
in ≥50% of tumor cells, whereas chemotherapy and 

ICB combinations and combined ICB can be adminis-
tered regardless of PD-L1 expression [3, 4]. Since 2018, 
adjuvant ICB with curative intent after concurrent 
chemoradiotherapy has been available for patients with 
locoregional (stage III) PD-L1-positive disease [10], and 
recently, ICB has been introduced in treatment strategies 
including surgery with both neoadjuvant and adjuvant 
regimens [11, 12].

However, specific molecular markers for identifying 
patients who will respond to ICB are still lacking, as only 
20-40% of patients currently benefit from ICB therapy 
[13–16]. Besides PD-L1 expression, there is only one bio-
marker for solid tumors that received FDA approval for 
treatment with pembrolizumab in the US in 2020 [17], 
defined as tumor mutational burden (TMB). TMB consti-
tutes the number of somatic DNA variants in the tumor 
calculated per megabase (Mb) and  ≥10 mutations/Mb 
has been approved as a cutoff, associated with a favor-
able outcome after ICB treatment in some studies [18, 
19]. The reliability of TMB, however, has been questioned 
and the indication has never been approved in the EU. 
Potential reasons include the lack of standardized labora-
tory methods for analyzing and calculating TMB, which 
has made it difficult to compare and find a relevant cutoff 
level regarding the number of variants that represent a 
high TMB. As a result, various cutoffs ranging from 10 to 
20 variants/Mb have been suggested in additional stud-
ies [18–21]. There are also results reported contradictory 
to expected outcome, where patients with low TMB were 
responders and vice versa [20, 22, 23].

Regarding known tumor drivers in NSCLC and 
response to ICB, there are some data where tumors 
driven by EGFR variants and ALK rearrangement have 
been shown to be resistant to ICB regardless of PD-L1 
expression status [24, 25]. KRAS, the most prevalent 
oncogenic driver in NSCLC, has been associated with 
a better response to ICB than patients not harboring 
variants in KRAS, but the findings have to date been 
inconclusive [26–31]. Single gene variants or multiple 
variants in different genes, referred to as co-mutations 

revealed that the presence of likely pathogenic variants and variants of unclear significance in LRP1B was associated 
with improved OS (p = 0.041). Importantly, further analysis of variant combinations in the tumor showed that 
co-occurrence of KRAS and LRP1B variants significantly improved OS (p = 0.003) and merged PFS (p = 0.008). Notably, 
the triple combination of variants in KRAS, LRP1B, and TP53 positively impacted both OS (p = 0.026) and merged PFS 
(p = 0.003).

Conclusions This study suggests that combination of the LRP1B and KRAS variants identified through our novel 
molecular classification scheme leads to better outcomes following ICB treatment in NSCLC. The addition of TP53 
improves the outcome even further. To our knowledge, this is the first report indicating that harboring a combination 
of KRAS, LRP1B, and TP53 variants can significantly enhance the response to ICB, suggesting a novel predictive 
biomarker combination for NSCLC patients.
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or co-variants, have been correlated with the response 
to ICB in different studies and the unclear correlation 
of the ICB response to KRAS pathogenic variants could 
be explained by co-variants in STK11 and KEAP1 that 
are associated with a poor response [32–35], whereas 
co-variants in TP53 mostly are associated with a good 
response [36, 37]. Variants in the tumor suppressor 
LRP1B have recently been linked to better outcomes 
following ICB treatment in multiple cancers, including 
NSCLC [38, 39].

The use of broad NGS panels for screening of mul-
tiple genes in the diagnosis of NSCLC provides infor-
mation about a large number of DNA variants that are 
not known drivers and there is a lack of solid evidence 
regarding their pathogenicity. The in-depth knowledge of 
how different variants in various genes cooperate based 
on their pathogenicity and how this relates to prediction 
of response is still in its early stages and presents large 
challenges. The molecular biomarkers identified to date 
have mainly been based on previously known pathogenic 
variants in well-known oncogenic drivers [40].

The classification of variants in less well-known genes 
as “pathogenic” or “benign” is often unclear and chal-
lenging because molecular tools and clinical information 
is lacking and not consistently evaluated according to 
guidelines such as the AMP and ACMG [40]. Currently, 
co-variants are not considered in clinical practice for 
selection of treatment options. Studies on the impact of 
co-variants on treatment response have reported results 
from retrospectively collected datasets with limited num-
ber of patients and not correlated with treatment regi-
men [41, 42]. Another molecular strategy for identifying 
new biomarkers is to study specific patterns of variants in 
tumors, known as mutational signatures [43–45].

In this prospective study, we analyzed variants in a 
well-characterized cohort of patients treated with ICB. 
We performed a genomic screening analysis of the 
tumors with a large NGS panel followed by a comprehen-
sive variant analysis. The variant analysis included inter-
pretation and classification of DNA variants, for which 
clinical evidence is lacking till date, using a large variety 
of databases and existing single prediction tools, with 
the aim to predict the pathogenicity of newly identified 
variants. Furthermore, we both analyzed the impact of 
selected single variants and combinations of variants on 
the clinical outcome of ICB treatment.

Materials and methods
Patient cohort
We conducted a prospective bicentric study including 
53 NSCLC patients (Bio-Lung cohort) with stage III or 
stage IV disease at inclusion, age ≥ 18 years, and receiv-
ing ICB in any line setting according to standard practice. 
Patients with treatment for newly diagnosed, recurrent 

disease and progressive disease were included. A single 
dose of ICB containing treatment was deemed to be suf-
ficient. The patients were recruited between April 2019 
and October 2021 and data cut of was 28th of February 
2023. The study was approved by the Regional Ethics 
Review Board in Gothenburg, Sweden (Permit number 
953/18), and all participating patients signed an informed 
consent. In the workup of the clinical data, two patients 
were excluded from further downstream analysis due to 
incorrect diagnoses, and another because of lack of fol-
low-up data. In addition, through our mutational signal-
ing analysis, we identified one patient with a skin primary 
tumor, and lung tumors were later considered to be met-
astatic lesions. This patient was therefore later excluded. 
As a result, 49 out of 53 patients were included in the 
final analysis (Fig. 1).

Clinical response
The clinical response to treatment was determined based 
on the CT-scan results obtained every 3 months, in line 
with the immune-related Response Evaluation Crite-
ria in Solid Tumors (irRECIST) algorithm, assessed by 
an oncologist according to clinical judgment. The clini-
cal response was divided into complete response, par-
tial response, stable disease, and progressive disease as 
previously described [46]. In this study, responders were 
defined as patients who did not have progressive disease 
at up to 9 months (3rd assessment) after the start of ICB 
therapy, confirming their clinical response to ICB.

Isolation and sequencing of DNA from patient samples
Genomic DNA from FFPE tumor biopsies was ini-
tially analyzed in the clinical diagnosis workflow with 
the Oncomine™ Focus Assay (Thermo Fisher Scientific, 
Waltham, MA, USA), and these results are included in 
Additional file 1. The samples (n = 50) were then analyzed 
with a NGS panel, the INVIEW Oncoprofiling Panel 
(Oncopanel All in One v2.8, Eurofins Genomics (Europe 
Sequencing GmbH, Germany)), which included 597 can-
cer-associated genes (Additional file 2). All steps, includ-
ing extraction of DNA from blood and FFPE samples, 
quantification, library preparation (Agilent Technologies, 
Santa Clara, CA, USA) and sequencing, were performed 
at Eurofins Genomics using in-house protocols and 
sequencing on the Illumina NovaSeq 6000 platform (Illu-
mina, San Diego, CA, USA) with 2 × 150  bp paired-end 
reads and a limit of detection of 1% for insertions and 
deletions (indels) and single nucleotide variants (SNVs).

Bioinformatic analysis and filtration of data
All data quality assessments, alignments and variant 
calling were performed at Eurofins Genomics (Europe 
Sequencing GMB, Germany) using the TNseq pipeline 
from Sentieon® Genomics tools [47]. With the removal of 
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duplicate reads, the average coverage for the FFPE sam-
ples was 775x, and for the corresponding blood samples, 
it was 1097x. High-quality reads with a Q-score above or 
equal to 30 were used in the downstream analysis. Paired 
germline and tumor analyses were performed to filter out 
germline DNA variants. Somatic-specific DNA variants 
in VCF files, including SNVs and indels, were further fil-
tered in house using Alissa interpret (Agilent Technolo-
gies, Santa Clara, CA, USA) with a cutoff for population 
filtration of 1%. The data was not analyzed for copy num-
ber variants, structural variants, or fusion genes.

Interpretation and classification of somatic DNA variants
All variants interpreted were manually reviewed in Inte-
grative Genomics Viewer (IGV) for exclusion of technical 
artifacts [48]. A 5% variant allele frequency (VAF) cutoff 
was used, except for tumors with a low tumor-to-normal 
tissue ratio where a 3% cutoff was applied. Exonic vari-
ants, including nonsynonymous variants, splice variants 
(+/-2  bp), indels and known pathogenic synonymous 
variants, were analyzed. Exceptions were made for 
intronic variants in BRCA1, BRCA2 and MET (exon 14), 
where intronic variants were also detected. Technically 

Fig. 1 Patient inclusion and exclusion. Flow chart showing patients included in the analyses after applying exclusion criteria
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complex variants that were present in more than 10% of 
samples (except for recurrent known likely pathogenic 
and pathogenic variants), were excluded due to method- 
or panel-specific sequencing errors. DNA variants with a 
VAF < 0.1% according to the normal population database 
gnomAD (v2.1 and v3.1;  h t t p  s : /  / g n o  m a  d . b  r o a  d i n s  t i  t u t e . 
o r g /) were further interpreted. Databases used included 
(OncoKB (https://www.oncokb.org/) and ClinVar ( h t t p  s : /  
/ w w w  . n  c b i  . n l  m . n i  h .  g o v / c l i n v a r /).

All DNA variants were classified into five interpreta-
tion categories, namely, pathogenic (P), likely pathogenic 
(LP), variant of unclear significance (VUS), likely benign 
and benign variants, where only the first three classes are 
presented. VUSs were classified based on several manu-
ally investigated molecular prediction criteria and data-
bases, analyzed via an in-house developed point-based 
scoring scheme, and subclassed into four different clas-
sification categories (VUS-, VUS, VUS + and VUS++). 
The variants that had undergone the scoring system for 
classification (Additional file 3) were checked within 
AlphaMissense (assessed via MobiDetails), which in 
most cases agreed with the classification from the variant 
classification system. Loss of function variants in onco-
genes were directly classified as VUS and were not fur-
ther evaluated. Variants interpreted with scores of 3.5 or 
above based on information in several databases and pre-
diction tools were classified as VUS + + and in the range 
of 2.5 to 3 as VUS+ (Additional file 3).

In total, 75 variants were classified as VUS- if they had 
a score below zero and were not included in further anal-
yses. These variants were not present in a known driver 
gene (CancerGeneCensus (COSMIC v96), cancer-genes.
org (Memorial Sloan Kettering Cancer Center, New York 
Cite, USA; q-value/FDR < 0.25), IntOgen) or a driver vari-
ant (CancerGenomeInterpreter) and were also classified 
as likely benign in VarSome.

Databases used and exceptions from standard workflow 
for variant classification
For variants in TP53, BRCA1 and BRCA2, additional 
locus-specific databases were used, including the TP53 
(https://tp53.isb-cgc.org) and Seshat  (   h t t p : / / v p s 3 3 8 3 4 
1 . o v h . n e t /     ) databases and the BRCA1 and BRCA2 data-
bases (InterVar (https://wintervar.wglab.org/) and BRCA 
Exchange (https://brcaexchange.org/)). Variants in POLE 
and POLD1 were classified as VUS when the variant was 
outside of the exonuclease domains, and no further infor-
mation regarding pathogenicity was found. If the variant 
was identified in the exonuclease domain of the protein 
[49], it was included in the evaluation for classification.

Mutational signature analysis
High-quality BAM files from tumors and blood from 
each patient sample were used as input files for the 

extraction of both intronic and exonic somatic variants 
with Mutect2 (GATK, v.4.1.3.0, Broad Institute of MIT 
and Harvard, Cambridge, MA, USA). FilterMutectCalls 
was applied for filtering with the default settings. Fur-
thermore, the samples were grouped and analyzed in Sig-
ProfilerExtractor with filtered data from FFPEsig [50, 51]. 
Mutational signature analysis for single-base substitution 
was performed on all 50 patient samples, which were 
assigned to reference mutational signatures (v 3.3; COS-
MIC v96). In this analysis one patient was found to have a 
signature related to UV-light exposure that identified the 
origin of the primary tumor from the skin (Additional file 
4). This patient was excluded from further analysis.

TMB analysis
TMB was calculated by Eurofins Genomics by dividing 
the number of variants by the size of the targeted coding 
region in Mb. Only missense variants were included in 
the calculation. The calculation was performed using the 
following exclusion criteria: noncoding variants, variants 
listed as known somatic pathogenetic variants (COSMIC 
v71), known germline variants (dbSNP), variants with 
depth below 50x and allele frequency below 0.05, germ-
line variants with more than two counts in gnomAD, and 
variants in tumor suppressor genes [52, 53].

PD-L1 expression
PD-L1 expression was determined based on the percent-
age of tumor cells with positive membranous staining 
and was reported as the tumor proportion score (TPS): 
PD-L1-negative TPS < 1%, low TPS 1-49%, and high 
TPS ≥ 50%. PD-L1 expression was assessed using PD-L1 
IHC 28 − 8 pharmDx (Agilent Technologies, Santa Clara, 
CA, USA) during routine diagnostic workup, and stain-
ing was analyzed by lung pathologists.

cBioPortal data
To extend the dataset, we extracted data from cBioPor-
tal, where progression-free survival (PFS) data and muta-
tional status data were available for KRAS, TP53, and 
LRP1B including studies where immunotherapy was used 
as a first- or second-line treatment. For studies including 
KRAS and TP53, we found 331 patients [54–58], whereas 
for LRP1B we found 91 patients [54, 55]. These data were 
merged with our dataset, referred to here as merged PFS. 
In total, 379 patient samples were included in the merged 
PFS for KRAS and TP53. For LRP1B, a total of 139 patient 
samples were included in the merged PFS cohort.

Statistical analysis
Clinical characteristics were summarized using descrip-
tive statistics and evaluated with univariate analysis. 
Kaplan‒Meier survival curves were generated to assess 
overall survival (OS) and progression free survival (PFS). 

https://gnomad.broadinstitute.org/
https://gnomad.broadinstitute.org/
https://www.oncokb.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://tp53.isb-cgc.org
http://vps338341.ovh.net/
http://vps338341.ovh.net/
https://wintervar.wglab.org/
https://brcaexchange.org/
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OS was defined as the time interval from the date of 
administration of first ICB containing treatment until 
death from any cause. PFS was defined as the time inter-
val from the date of administration of first ICB contain-
ing treatment until progression or death. Alive patients 
without disease progression were censured at the date 
of data cut off. The log-rank test was used to assess dif-
ferences in survival between groups. Multivariate Cox 
regression analysis was conducted to compensate for 
potential confounders including sex, age, smoking status, 
PS, stage at inclusion, histology, line of treatment, PD-L1 
and TMB. For the merged PFS cohort, multivariable Cox 
regression analysis was also conducted to compensate for 
the potential confounding factors sex, age and smoking 
status. Statistical significance was set at p < 0.05, and no 
adjustments were made for multiple comparisons. Data 
analysis was conducted using IBM SPSS Statistics version 
27 and GraphPad Prism version 9.

Results
Classification model for identification of variants
We established a classification model for the integration 
of theoretical prediction tools and database information 
to interpret variants from a large NGS screening panel 
into different classification categories in genes commonly 
mutated in NSCLC (Fig.  2A). We further evaluated the 
predictive biomarker potential of these gene variants as 
single variants or in combinations as co-variants. In addi-
tion, mutational signature analysis was performed on the 
NGS data for all the patients.

The result of the molecular analysis including the most 
commonly mutated genes, type of mutations and histol-
ogy are presented in Fig. 2B. Among 49 patients analyzed 
we identified and classified 141 DNA variants as P or LP 
(Additional file 5). The VUS categories included 607 vari-
ants (VUS++, VUS + and VUS) in total and ranged from 
0 to 71 variants per sample. A total of total of 106 vari-
ants in the categories VUS + + and VUS+(31 VUS++, 75 
VUS+) were identified. In addition, 501 variants were 
classified as VUSs (Additional file 3 and 6).

The most frequently identified pathogenic variant was 
KRAS (34%). Twenty-nine patients (59%) had known 
pathogenic variants in either KRAS (p.(G12C), p.(G12A), 
p.(G12V), p.(G13C), p.(Q61L), and p.(Q61H)), IDH1 (p.
(R132C)), MET (exon 14 skipping), ROS1 (p.(G2028R/
G2032R)), PIK3CA (p.(E545K)), EGFR (p.(G719C)) or 
KIF5B-RET gene fusions identified through the initial 
clinical NGS panel (Additional file 1). With the estab-
lished workflow we identified P and LP variants in several 
additional genes including TP53 (32 variants), LRP1B (6 
variants), ARID1A (6 variants), ATM (4 variants), KEAP1, 
BRCA1 and BRCA2. Among VUS (VUS++, VUS + and 
VUS) 28 variants were identified in CSMD3, 16 variants 
in LRP1B and 13 variants in FAT3. VUS ++, VUS + also 

included variants in KEAP1, DNMT3A, TSC2, LZTR1 
and POT1. One of the most common genes identified 
with LP and strong VUSs was LRP1B (Additional file 6 
and 7). One non-responding patient with an LRP1B vari-
ant also had two variants in KEAP1 (classified as VUS+) 
and another non responder who carried an LRP1B vari-
ant had an additional STK11 variant. One responder had 
two LRP1B variants and a KEAP1 variant that was classi-
fied as VUS. The KEAP1 variant, was however localized 
in the last nucleotide of the last exon in the main tran-
script (NM_203500.2:c.1875  A > C, p.(*625Cysext*48)) 
and therefore the variant might not affect the protein.

The genes with the most commonly combined altera-
tions were CSMD3 and TP53, which were found in 17 
patients (35%). Combination of DNA variants in KRAS 
and LRP1B were found in 11 patients (22%) (Additional 
file 8). In addition, combinations of TP53 and KRAS vari-
ants were found in 10 patients (20%). Combinations of 
TP53 and LRP1B were also common (27%, 13 patients), 
and the combination of KRAS, LRP1B and TP53 was 
found in 6 patients (12%).

Patient demographics and clinical characteristics
The median age of the patients were 72 years, 89% were 
ever smokers (former or current) and the majority the 
patients were female (55%). At inclusion, most patients 
had an ECOG performance status of 1 (61%), and adeno-
carcinoma was the most common histological subtype 
(67%). The majority of patients had stage IV disease at 
inclusion (91%) and 71% of all the patients received ICB 
in a first-line treatment setting. More than half of the 
patient cohort received combined treatment with che-
motherapy and ICB (59%), about a third received ICB 
monotherapy (32%) and a smaller proportion received 
adjuvant ICB (8%). The median follow-up time was 31 
months (Additional file 1). Patient LCS125 experienced 
a change in treatment before progression and was there-
fore excluded from PFS analysis.

Single variants in LRP1B and KRAS are predictive 
biomarkers of survival outcomes following ICB treatment
Based on the most common identified molecular vari-
ants in the cohort, we analyzed LRP1B, KRAS, TP53 
and CSMD3 as single variant predictive biomarkers for 
OS and PFS. The presence of an LRP1B DNA variant 
(LP, VUS++, VUS + or VUS) was beneficial for OS, with 
a median OS not reached vs. 22 months (p = 0.041), no 
LRP1B variants were classified as VUS- likely benign or 
benign (Fig. 3A and Additional file 7). Multivariate Cox 
regression analysis revealed that LRP1B was an indepen-
dent predictor of improved OS (HR 0.280, 95% CI 0.096–
0.819; p = 0.020) (Additional file 9  A). Median PFS was 
better for patients with LRP1B variants with 21 months 
vs. 8 months, but the difference did not reach statistical 
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Fig. 2 Overview of method workflow and results. (A) Classification and interpretation model. (B) Waterfall plot showing the most frequently mutated 
genes in the patient cohort in categories pathogenic (P), likely pathogenic (LP), and variant of unknown significance (VUS; VUS + + and VUS+). The top plot 
shows the tumor mutational burden (TMB) for each sample and the bottom plot shows the histological subtype. The waterfall plot was constructed in R 
v4.3. Abbreviations used: LUAD = lung adenocarcinoma and LUSC = lung squamous cell carcinoma. TMB = tumor mutational burden
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significance (p = 0.132) (Fig.  3B). In the merged PFS 
group, patients with LRP1B variants had a significantly 
better median PFS 23 months vs. 7 months (p = 0.009) 
(Fig. 3C). In multivariate Cox regression analysis, LRP1B 
was an independent predictor of prolonged merged PFS 
(HR 0.515, 95% CI 0.299–0.885; p = 0.016) (Additional file 
9 B).

Having KRAS pathogenic variants significantly 
improved survival with a median OS not reached vs. 18 
months (p = 0.041) (Fig. 3D). Multivariate Cox regression 
analysis revealed that solely KRAS pathogenic variants 
were not an independent factor for better OS (HR 0.422, 

95% CI 0.143–1.247; p = 0.119) (Additional file 9  C). 
Numerically the median PFS was better for patients with 
KRAS pathogenic variants 14 months vs. 8 months, but 
the difference was not statistically significant (p = 0.469) 
(Fig. 3E). In the merged PFS cohort, there was no signifi-
cant difference between patients with KRAS pathogenic 
variants and wild-type KRAS (p = 0.253) (Fig. 3F).

With regard to TP53, there was no impact on OS or 
PFS in our cohort alone (Fig. 3G and H). However, in the 
merged PFS group, patients harboring TP53 pathogenic 
variants had significantly longer PFS, with a median of 
15.5 vs. 10 months (p = 0.003) (Fig. 3I). Multivariate Cox 

Fig. 3 Single variants as predictive biomarkers. Kaplan-Meier estimates comparing overall survival (OS) (A) and progression free survival (PFS) (B) and 
merged progression free survival (C) stratified on LRP1B status. Kaplan-Meier estimates comparing overall survival (D) and progression free survival (E) and 
merged progression free survival (F) stratified on KRAS status. Kaplan-Meier estimates comparing overall survival (G) and progression free survival (H) and 
merged progression free survival (I) stratified on TP53 status. *DNA variant classified as P, LP, VUS++, VUS + and VUS
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regression analysis revealed that TP53 was an indepen-
dent predictor of prolonged merged PFS (HR 0.724, 95% 
CI 0.552–0.950; p = 0.020) (Additional file 9 D).

Single CMSD3 variants did not impact OS or PFS in 
the cohort and the variants found were mainly benign 
(Additional file 10 A and 10B).

Combined variants LRP1B and KRAS a better predictive 
biomarker
Next, we investigated the impact of the combination of 
above variants on OS and PFS.

We found that having combined KRAS and LRP1B 
variants significantly improved OS, with a median not 
reached vs. 18 months (p = 0.003) (Fig. 4A). Multivariate 

Cox regression analysis revealed that the combination 
of KRAS and LRP1B was an independent predictor of 
improved OS (HR 0.062, 95% CI 0.008–0.493; p = 0.009) 
(Additional file 9 E). When analyzing PFS, the median 
time to progression was 31 months for combined KRAS 
and LRP1B variants vs. 7 months (p = 0.102) (Fig. 4B). In 
the merged PFS group, the combination of KRAS and 
LRP1B variants had a median PFS of 31 vs. 7 months, 
and the difference was statistically significant (p = 0.008) 
(Fig.  4C). Multivariate Cox regression revealed that the 
combination of KRAS and LRP1B was an independent 
predictive factor for improved merged PFS (HR 0.412, 
95% CI 0.188–0.902; p = 0.027) (Additional file 9 F).

Fig. 4 Co-variants as predictive biomarkers. Kaplan-Meier estimates comparing overall survival (OS) (A), progression free survival (PFS) (B) and merged 
progression free survival (C) stratified on co-variant KRAS LRP1B status. Kaplan-Meier estimates comparing overall survival (D), progression free survival (E) 
and merged progression free survival (F) stratified on co-variant KRAS and TP53 status. Kaplan-Meier estimates comparing overall survival (G), progres-
sion free survival (H) and merged progression free survival (I) stratified on co-variant KRAS, LRP1B and TP53 status. *DNA variant classified as P, LP, VUS++, 
VUS + and VUS
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Furthermore, we stratified patients into four groups: 
wild-type KRAS and wild-type LRP1B, KRAS variant with 
wild-type LRP1B, LRP1B variant with wild-type KRAS, 
or the combination of KRAS and LRP1B variants. The 
stratification was done to investigate how patients with 
wild-type of KRAS or LRP1B or variants in these genes 
responded compared to patients having wild-type of both 
or combination of both. The results demonstrated that 
the combination of KRAS and LRP1B variants seemed 
to be driving response, as the group LRP1B variant with 
wild-type KRAS had shorter OS and PFS compared to all 
the other groups. KRAS variant with wild-type LRP1B 
displayed slightly longer OS and PFS, but still shorter 
than wild-type of both and combination of both. The 
results demonstrated that the combination of KRAS and 
LRP1B variants were associated with improved OS, with 
a median not reached in comparison with patients with 
no variants 22 months (median). This enhancing the 
results described earlier that patients with the combina-
tion of LRP1B and KRAS variants respond significantly 
better to ICB. For those with only KRAS variants the OS 
was 14 months and for those with only LRP1B variants 
the OS was 9 months (p = 0.028) (Additional file 11  A). 
When analyzing PFS, the same trend was observed, but 
was not statistically significant for the cohort (p = 0.379) 
(Additional file 11 B). In the merged group, the combina-
tion of KRAS and LRP1B variants was beneficial for PFS, 
with a median of 31 months, whereas the group without 
the variants had a PFS of 7 months, only KRAS variants 
had a PFS of 8 months, and only LRP1B variants had a 
PFS of 5 months (p = 0.038) (Additional file 11 C).

Combined KRAS and TP53 pathogenic variants did not 
significantly impact OS, with a median not reached vs. 24 
months (p = 0.316) (Fig.  4D). Neither regarding PFS did 
we observe any difference between patients with com-
bined KRAS and TP53 pathogenic variants with a median 
PFS of 9 vs. 8 months (p = 0.640) (Fig. 4E). However, when 
analyzing the merged PFS group, there was a significant 
improvement in survival with the combined KRAS and 
TP53 pathogenic variants with a median of 15.5 months 
vs. 10 months (p = 0.003) (Fig. 4F).

Further we investigated the impact of triple combina-
tion of KRAS, LRP1B and TP53 on survival. We found 
that all six patients harboring the triple combination were 
alive at last follow-up and OS was significantly higher 
than that of patients without the triple combination 
(p = 0.026) (Fig. 4G), no median OS could be calculated. 
The PFS was 31 months for the triple combination group 
vs. 7 months although the difference was not significant 
(p = 0.142) (Fig. 4H). In the merged PFS, median was not 
reached for the triple combination group vs. 7 months, 
and the difference was significant (p = 0.003) (Fig.  4I). 
Multivariate Cox regression revealed that harboring 
the triple combination was an independent predictor of 

improved merged PFS (HR 0.221, 95% CI 0.067–0.728; 
p = 0.013) (Additional file 9 G).

To investigate the impact of TP53 in the triple com-
bination, we stratified patients in the KRAS-LRP1B 
combination cohort (n = 17) in the merged PFS cohort 
according to TP53 status. Our analysis revealed that 
the presence of a TP53 variant was clearly beneficial, 
with median not reached vs. 6.5 months to progression, 
respectively, and the difference was significant (p = 0.047) 
(Additional file 11D).

There were no other established biomarkers that were 
enriched in patients with LRP1B variants classified as P, 
LP, VUS + + or VUS+. Interestingly, in two patients we 
found that co-variants of LRP1B and KRAS together with 
KEAP1 or STK11 did not negatively impact the response. 
(Additional file 7).

PD-L1 expression alone and in combination as a predictive 
biomarker
PD-L1 grade (negative, low or high) is the current stan-
dard biomarker approved for ICB treatment in Europe. 
Hence, we also analyzed the impact of PD-L1 grade on 
OS and PFS alone and combined with KRAS and LRP1B 
variants. PD-L1 score had no impact on OS but a sig-
nificant impact on PFS, with median PFS 6 months for 
the negative group, 11 months for the low group and 14 
months for the high group (p = 0.034) (Fig. 5A and B).

Notably, having PD-L1-positive (> 1%) tumors com-
bined with variants in KRAS and LRP1B was predictive of 
better survival, with a median not reached vs. 22 months, 
(p = 0.007) (Fig. 5C). Multivariate Cox regression revealed 
that PD-L1-positive tumors combined with variants 
in KRAS and LRP1B was an independent predictor of 
improved OS (HR 0.087, 95% CI 0.011–0.688; p = 0.021) 
(Additional file 9  H). For PFS, there was a clear differ-
ence in the median time to progression 31 months vs. 7 
months, but the difference was not statistically significant 
(p = 0.074) (Fig.  5D). However, multivariate Cox regres-
sion revealed that PD-L1-positive tumors combined with 
KRAS and LRP1B DNA variants was an independent pre-
dictive factor for improved PFS (HR 0.334, 95% CI 0.113–
0.984; p = 0.047) (Additional file 9 I).

In the next step we analyzed the impact of high 
PD-L1(≥ 50%) expression in combination with variants 
in KRAS and LRP1B. We found that having high PD-L1 
expression and combined variants in KRAS and LRP1B 
was clearly beneficial for OS with all patients being alive 
and median not reached (p = 0.013) (Fig.  5E). Similarly, 
PFS median not reached in the PD-L1-high score group 
vs. 8 months (p = 0.022) (Fig.  5F). The combination of 
KRAS, LRP1B and PD-L1 high is clearly enriched in the 
responding group of the cohort and there was only one 
single patient harboring all three in the non-respond-
ing group (Fig.  6). Notably the triple combination with 
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KRAS, LRP1B and TP53 was not present at all in the non-
responder group (Fig. 6).

Discussion
Pathogenic oncogenic driver variants are the current 
standard when selecting targeted treatment options 
for NSCLC patients. Loss of function variants in tumor 
suppressor genes is not routinely assessed in the clinic, 

despite accumulating evidence for the importance of co-
variants identified in tumor analysis, both for progno-
sis and treatment response in NSCLC [33–37, 59]. This 
is mainly due to the lack of studies showing the clini-
cal impact of co-variants. Additionally, with the ongo-
ing implementation of a comprehensive variant analysis 
in clinical routine, there is a critical need to understand 
how to utilize the additional information provided by the 

Fig. 5 PD-L1 status and co-variants as predictive biomarkers. Kaplan-Meier estimates comparing overall survival (OS) (A) and progression free survival 
(PFS) (B) stratified on PD-L1 status. Kaplan-Meier estimates comparing overall survival (C) and progression free survival (D) stratified on combined KRAS 
LRP1B and PD-L1 positive status. Kaplan-Meier estimates comparing overall survival (E) and progression free survival (F) stratified on combined KRAS, 
LRP1B and PD-L1 high status. *DNA variant classified as P, LP, VUS++, VUS + and VUS
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Fig. 6 Swimmer’s plot displaying patients with specific characteristics. Swimmer’s plot where patients are divided into non-responders and responders 
based on response to immune checkpoint blockade. Color of bars show treatment regime and length of bars present the survival time in months from 
inclusion in the study. In case of progressive disease or death, this is marked with crosses. PD-L1 high (≥ 50%) is denoted. Patients with genetic alterations 
in KRAS, LRP1B and TP53 are marked, respectively
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identification of a large number of DNA variants using 
genomics screening methods where a large number of 
genes are included.

In this study, we present a combination of bioinfor-
matic tools that can be used to assess pathogenicity of 
identified variants from a genomic screening analysis, by 
integrating clinical available data with the evidence on 
a molecular level in a novel developed model. Applying 
this model, we show that co-variants of these three genes 
(KRAS, LRP1B and TP53) can clearly predict clinical 
response and survival outcomes.

Although current bioinformatic pipelines manage 
to call various types of variants from all forms of NGS 
data, a significant bottleneck remains in the interpreta-
tion. One of the primary challenges is the accurate inter-
pretation of the missense variants that are most likely 
to disrupt protein function. Despite the availability of 
various disease- and treatment-associated databases 
like OncoKB, ClinVar, large normal population-based 
databases like gnomAD and other prediction tools, 
identifying pathogenic driver variants remains chal-
lenging, particularly for genes with unknown functional 
mechanisms.

We weighed the available evidence through a point-
based evaluation system to differentiate the VUSs, 
potentially indicating their pathogenicity. This increased 
the understanding of the impact of variants in less well-
known genes and better identified DNA variants affect-
ing the treatment response in combination with known 
pathogenic drivers such as KRAS. We identified 78% P/
LP variants in oncogenes and tumor suppressor genes 
and identified VUSs (VUS++, VUS+) with pathogenic 
potential. Co-variants in the same gene may be associ-
ated with different outcomes in their predictive or prog-
nostic effect depending on the localization of the variant 
in the gene and the type of variant (truncating, splice 
variant, missense etc.). The detailed classification of 
VUSs in this study aimed to better identify potentially 
modifier variants and the impact of co-variants on the 
response. Hence, strong molecular VUSs, based on their 
interpretation and classification, were included through-
out the analysis.

In our analysis KRAS, LRP1B and TP53 were three of 
the most common genes with variants identified. KRAS 
is a well-known driver, and TP53 is the most common 
inactivated tumor suppressor gene in NSCLC, whereas 
LRP1B is a lesser-known tumor suppressor gene. Having 
a combination of all three variants is in our cohort was 
predictive of better response to ICB-containing treat-
ment. The addition of PD-L1 positivity and especially 
high PD-L1 seems to be even more beneficial.

Alfaro-Murillo and Townsend [60] developed a com-
putational model for the evaluation of somatic variants 
that included several parameters affecting which possible 

routes of sequential genetic alteration occurrence could 
be used in oncogenesis. The four most common driver 
genes in lung adenocarcinoma patients within NSCLC, 
TP53, LRP1B, KRAS, and STK11, were included in the 
analysis. The model could predict the interaction, com-
petition, and selection benefits of different DNA variants 
in these genes. The results from the analysis revealed that 
the combination of variants in TP53 and LRP1B strongly 
selected for high-effect driver variants in KRAS. These 
results on the effect of the co-variants on the LRP1B, 
TP53 and KRAS genes correlated with our results and 
impacted the response to ICB.

When exploring single variants as predictive biomark-
ers we found LRP1B alone to improve OS and PFS in 
our cohort. LRP1B has been found to be associated with 
improved outcomes in multiple cancer types, including 
NSCLC, with ICB treatment [38, 39, 61–63]. Brown et 
al. and Wang et al. identified LRP1B variants as potential 
biomarkers among ICB treated patients in accordance 
with our study. However, in these studies only a limited 
use of bioinformatic tools and databases were included 
and a more detailed interpretation and classification 
was not performed especially for the large group of VUS 
variants.

The LRP1B gene encodes a member of the low-density 
lipoprotein receptor family and is located on chromo-
some 2. Human LRP1B is highly expressed in normal 
tissues, including the lung. The large gene size (approxi-
mately 1.90 Mbps) has been challenging for performing 
functional studies. Cell proliferation, migration, apopto-
sis and endocytosis are some processes that have been 
linked to LRP1B and to proteins that interact with LRP1B 
[64–67]. LRP1B has been found to have a growth sup-
pressive function, which is correlated with its suggested 
role as a tumor suppressor gene [68–71].

Analysis of available NSCLC datasets in cBioPortal 
revealed that LRP1B was only included in one gene panel or 
in studies where whole-genome or whole exome sequenc-
ing was used (Additional file 12). In these studies, variants 
in LRP1B were detected in 32.7% of patients (849 of 2597 
patients). KRAS was detected in 25.7% of patients (668 of 
2597 patients). The combination of LRP1B and KRAS was 
detected in 13.3% of the patient population (346 of 2597 
patients), and the triple combination of KRAS, LRP1B and 
TP53 was detected in 5.5% of the patients (142 of 2597). 
These numbers were slightly higher in our cohort, where 
22.4% (11 of 49 patients) had a genetic variant in both LRP1B 
and KRAS, and the combination of KRAS, LRP1B and TP53 
was found in 12.2% (6 of 49 patients). The difference may be 
explained by the fact that our study only included patients 
eligible for ICB treatments and thus excluding patients with 
targetable alterations. Our findings suggest that identifying 
such genetic profiles may help identify patient subgroups 
likely to benefit from precision medicine approaches.
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Comparing the outcomes for patients with LRP1B LP/P 
variants who received ICB to those with VUS (accord-
ing to ClinVar), both OS and PFS were significantly better 
[38]. These results support the value and importance of 
variant interpretation for understanding the impact of new 
variants foremost as predictive biomarkers of response to 
immunotherapy. LRP1B mutation has been associated with 
increased immune cell infiltration and elevated expression 
of immune-related genes in NSCLC patients with adenocar-
cinoma treated with ICB, suggesting a possible role in the 
improved response to ICB [72, 73]. Furthermore, knock-
down of LRP1B has been shown to induce inflammation 
through the IL-6-JAK-STAT3 pathway [69]. However, its 
function both in normal tissue and in cancer is still poorly 
understood and additional functional studies are needed 
to fully understand the connections between LRP1B, the 
immune system and the response to ICB. Importantly, while 
previous retrospective studies have implicated LRP1B pri-
marily as a prognostic biomarker [38, 63, 74], our prospec-
tive study suggests LRP1B variants as predictive biomarkers 
for ICB response. Furthermore, prior studies have not 
examined the interaction between LRP1B and KRAS muta-
tions, a key focus of our study.

Variants in KRAS as a sole variant was not significantly 
associated with improved survival in the multivariate 
analysis, as previously shown [27]. This might reflect 
both the heterogeneity among patients with different 
KRAS-variants as well as the importance of co-variants. 
Here, we show that this effect of improved outcomes 
after ICB is primarily driven by the combination of muta-
tions in LRP1B with KRAS, which has not been described 
before. KRAS variants are strongly linked to smoking 
and high TMB [75], and LRP1B variants might also be 
associated with high TMB [39, 74]. In Wang et al. no 
correlation between co-variants in LRP1B ad KRAS and 
response was found, however in their large retrospec-
tive study only 2% of the patients had a combination of 
LRP1B and KRAS, compared with our study where 22.4% 
of the patient had this combination, highlighting the 
importance of evaluating combination of variants in dif-
ferent populations.

Patients with non-synonymous variants in TP53 have 
shown longer PFS with ICB monotherapy compared with 
patients that are wild type for TP53 when analyzing cBio-
Portal data and the same tendency was seen in a combi-
nation therapy cohort. Patients with co-variants in KRAS 
and TP53 also had a positive correlation with response 
and variants in KEAP1 and STK11 together with vari-
ants in KRAS and TP53 trends towards better prognosis 
compared with tumors that were wild-type for KRAS and 
TP53. In a recent study KRAS (G12C)/TP53 co-variants 
correlated with long-term response to monotherapy 
treatment suggesting that the type of KRAS variant might 
be important [76, 77]. Different variant types in several 

genes have also been found to correlate differently to 
treatment; for TP53, R175H had a negative impact on the 
response to immunotherapy in several metastatic solid 
cancers [78]. Truncating variants in KEAP1 including 
exon1 and 2 have been associated with worse outcome 
than variants in other parts of the coding region [79].

This study, to our knowledge, is the first to report that 
harboring a combination of variants in the KRAS, LRP1B 
and TP53 can clearly be beneficial for the response to 
ICB and could be considered a potential predictive bio-
marker for NSCLC patients. Why the combination of 
variants in the KRAS, LRP1B and TP53 genes are ben-
eficial for ICB treatment needs further functional inves-
tigation. Limitations of this study include the relatively 
small size of the cohort, and the results should be further 
validated in larger cohorts. The study was also limited to 
panel analysis and did not include analysis of the whole 
exome or genome, which could also explain a difference 
in the correlation between a high TMB and variants in 
LRP1B found in previous studies [74]. Functional analy-
ses are also necessary to elucidate the interplay between 
KRAS, LRP1B, and TP53 to guide treatment decisions.

Conclusions
In our well-characterized prospective cohort of patients, we 
assessed genetic biomarkers to predict treatment response 
to ICB. Our findings offer a potential explanation for the 
previously inconsistent reports regarding the response of 
patients with KRAS variants to ICB. Specifically, the possi-
bility that combinations of KRAS and other genetic variants 
may significantly influence treatment response emphasizes 
the importance of comprehensive genetic testing and anal-
ysis. Notably in this study, the combination of KRAS and 
LRP1B variants emerges as a clear promising prognostic 
biomarker, with the potential addition of TP53 to enhance 
prognostic accuracy. However, larger cohort studies and 
functional analyses are necessary to elucidate the inter-
play between KRAS, LRP1B, and TP53 to guide treatment 
decisions. This study highlights the critical importance of 
including LRP1B in targeted gene panels for clinical rou-
tine testing to improve patient stratification and therapeutic 
outcomes.
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