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Abstract
Background: Homeodomain-interacting protein kinase-2 (HIPK2) plays an essential role in
restraining tumor progression as it may regulate, by itself or within multiprotein complexes, many
proteins (mainly transcription factors) involved in cell growth and apoptosis. This study takes
advantage of the recent finding that HIPK2 may repress the β-catenin transcription activity. Thus,
we investigated whether HIPK2 overexpression may down-regulate vascular endothelial growth
factor (VEGF) levels (a β-catenin target gene) and the role of β-catenin in this regulation, in order
to consider HIPK2 as a tool for novel anti-tumoral therapeutical approaches.

Methods: The regulation of VEGF expression by HIPK2 was evaluated by using luciferase assay
with VEGF reporter construct, after overexpression of the β-catenin transcription factor. Relative
quantification of VEGF and β-catenin mRNAs were assessed by reverse-transcriptase-PCR (RT-
PCR) analyses, following HIPK2 overexpression, while β-catenin protein levels were evaluated by
western immunoblotting.

Results: HIPK2 overexpression in tumor cells downregulated VEGF mRNA levels and VEGF
promoter activity. The VEGF downregulation was partly depending on HIPK2-mediated β-catenin
regulation. Thus, HIPK2 could induce β-catenin protein degradation that was prevented by cell
treatment with proteasome inhibitor MG132. The β-catenin degradation was dependent on HIPK2
catalytic activity and independent of p53 and glycogen synthase kinase 3β (GSK-3β) activities.

Conclusion: These results suggest that VEGF might be a target of HIPK2, at least in part, through
regulation of β-catenin activity. These findings support the function of HIPK2 as tumor suppressor
and hypothesise a role for HIPK2 as antiangiogenic tool in tumor therapy approaches.

Background
Homeodomain interacting protein-kinase 2 (HIPK2) has
been initially identified as corepressor for various homeo-
domain-containing transcriptional regulators [1]. In the
last ten years, HIPK2 has been found to regulate transcrip-
tion, apoptosis, cell growth, and development, acting

both as transcriptional co-repressor and as kinase,
through its interaction with a variety of functional pro-
teins [reviewed in ref. [2]]. HIPK2 phosphorylates sub-
strates such as oncosuppressor p53 for activation of its
apoptotic function [3,4] or promotes proteasomal degra-
dation of proteins such as MDM2 or CtBP, repressing their
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antiapoptotic activity [5,6]. It has been shown that Axin
forms a ternary complex with HIPK2 and p53, activating
p53-dependent transcription and apoptosis [7]. In Wnt
signalling, Axin interacts with many components of the
pathway, including the adenomatous polyposis coli
(APC) tumor suppressor, the serine/threonine kinases
casein kinase Iα (CKIα) and glycogen synthase kinase 3β
(GSK3β), and β-catenin [8-10]. This complex promotes
the degradation of β-catenin through multiple, hierarchi-
cal phosphorylation events that, once β-catenin is phos-
phorylated at Ser-37 and Ser-33 by GSK3β, is recognized
by β-transducing repeat-containing protein (β-Trcp) and
targeted for proteasomal degradation [11].

One essential element of the Wingless-Wnt signalling
pathway is β-catenin, a potent oncogene whose accumu-
lation has been implicated in tumorigenesis in a wide
variety of human cancers [12]. β-catenin can be regulated
by many biochemical mechanisms, not yet completely
understood [13]. In most cases, Wnt/β-catenin pathway is
activated by a mutation in APC tumor-suppressor; in
many remaining cases, mutations in β-catenin itself at
sites of GSK3β phosphorylation lead to β-catenin cyto-
plasmic accumulation and activation as transcription fac-
tor to induce the expression of several target genes,
including c-myc, cyclin D1, uPAR, c-jun, and fra-1 [14-17],
involved in cell growth.

Among the β-catenin target genes is vascular endothelial
growth factor (VEGF) [18], a potent inducer of angiogen-
esis both in vivo and in vitro [19]. Tumor progression is
often dictated by increased vascularity following VEGF
up-regulation. Thus, due to its role in tumor angiogenesis
VEGF is overexpressed in a wide variety of human cancers
[20]. The inhibition of VEGF expression has been shown
to decrease tumor size in nude mice and inhibit tumor
angiogenesis [21]. These findings underline the effort is
undertaken to study the regulation of the signalling path-
ways involved in tumor angiogenesis in an attempt to pro-
pose effective multiple-target strategies for the prevention
and treatment of human cancers.

These findings, along with a recent study showing that
HIPK2 represses the transcription of the β-catenin target
cyclin D1 [22], prompted us to investigate the influence of
HIPK2 on VEGF expression in tumor cells and the involve-
ment of β-catenin in this regulation.

Methods
Cell cultures and reagents
Human lung adenocarcinoma H1299 and human breast
cancer MCF7 cell lines were cultured in RPMI-1640
(GIBCO-BRL, Life Technology, Grand Island, NY, USA),
human embryonic kidney 293 cells were grown in Dul-
becco's modified Eagle's medium (DMEM, GIBCO-BRL),

all supplemented with 10% heat-inactivated fetal bovine
serum (GIBCO-BRL) plus glutamine and antibiotics in
humidified atmosphere with 5% CO2 at 37°C. Proteas-
ome inhibitors MG132 (Biomol, Research Laboratories,
Plymouth Meeting, PA, USA) was prepared as 50 mM
stock in DMSO, stored at -20°C and diluted into the
medium at 2.5 μM for 6 h. The treatment with 30 mM LiCl
(Sigma Chemical Company, Saint Louis, MO, USA) was
for 16 h.

Transfection, plasmids, and transactivation assay
Transient transfection was carried out using the N,N-bis-
(2-hydroxyethyl)-2-amino-ethanesulphonic acid-buff-
ered saline (BBS) version of the calcium phosphate proce-
dure [23]. The amount of plasmid DNA was equalized in
each sample by supplementing with empty vector. The
expression vectors used in this study were: Flag-HIPK2,
Flag-K221R [3]; human HA-β-catenin and mutant HA-
S33Y-β-catenin [24] (a kind gift of Avri Ben-Ze'ev, The
Weizmann Institute of Science, Rehovot, Israel); the syn-
thetic TOPFlash luciferase reporter (Upstate, Lake Placid,
NY, USA), highly specific for Wnt/β-catenin signaling,
that contains only LEF1/TCF binding sites; and the
human VEGF-luc promoter reporter (kindly provided by
C. Gaetano, IDI, IRCCS, Rome, Italy). Transfection effi-
ciency was normalized with the use of a co-transfected β-
galactosidase plasmid. Luciferase activity was assayed on
whole cell extracts and the luciferase values were normal-
ized to β-galactosidase activity and protein content. At
least three independent experiments were performed in
duplicate.

RNA extraction and RT-PCR analysis
Cells were harvested in TRIzol Reagent (Invitrogen) and
total RNA was isolated following the manufacturer's
instructions. The first strand cDNA was synthesized
according to the manufacturer's instructions (Moloney
murine leukemia virus reverse transcriptase kit, Applied).
Semi-quantitative RT-PCR was carried out by using HOT-
MASTER Taq (Eppendorf) with 2 μl cDNA reaction and
genes specific oligonucleotides under conditions of linear
amplification. The sequence of the primers used for RT-
PCR was as follow: human β-catenin forward: 5'-
GAAAATCCAGCGTGGACAATGGCTACT-3' and reverse
5'-ACC-ATAACTGCAGCCTTATTAACC-3'; human VEGF
forward: 5'-CCTGGTGGACATCTT-CCAGGAGTA-3'; and
reverse: 5'-TCACCGCCTCGGCTTGTC-ACA-3'. The VEGF
amplification leads to doublets representing the 165 and
121 VEGF isoforms, as previously shown [25]. DNA prod-
ucts were run on 2% agarose gel and visualized by ethid-
ium bromide using UV light. Densitometric analysis was
applied to quantify mRNA levels. Data presented are rep-
resentative of at least three independent experiments.
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Immunoblotting
Total cell extracts were prepared by incubating at 4°C for
30 min in lysis buffer (50 mM Tris-HCl, pH 7.5, 50 mM
NaCl, 5 mM EDTA, 150 mM KCl, 1 mM dithiothreitol, 1%
Nonidet P-40) plus a mix of protease inhibitors (Sigma
Chemical Company). Proteins were then separated by
SDS-PAGE and blotted onto nitrocellulose (Bio-Rad). The
membranes were probed with a primary antibody fol-
lowed by a secondary antibody conjugated with horserad-
ish peroxidase. The antibodies used were: rat monoclonal
anti-HA (Roche Diagnostics); rabbit polyclonal anti-cyc-
lin D1 (Santa Cruz Biotechnology, kindly provided by M.
Crescenzi, ISS, Rome, Italy); mouse monoclonal anti-
tubulin (Sigma Chemical Company); rabbit polyclonal
anti-β-catenin (Santa Cruz Biotechnology), rabbit poly-
clonal anti-phospho-GSK3α/β (Cell Signaling Technol-
ogy, Inc., Danvers, MA, USA), and mouse monoclonal
anti-GSK3β (Santa Cruz Biotechnology). Immunoreactiv-
ity was detected with the ECL chemoluminescence reac-
tion kit (Amersham Corp., Arlington Heights, IL, USA).
Data presented are representative of at least three inde-
pendent experiments.

Statistical analysis
Continuous variables were analyzed by the Student t test.
Data are expressed as mean ± SD. A value of p ≤ 0.05 was
considered statistically significant.

Results
HIPK2 decreased VEGF mRNA levels in tumor cells
High levels of VEGF expression have been associated with
tumor angiogenesis and therefore with tumor progression
in a wide variety of human cancers [20]. To determine
whether HIPK2 affected VEGF expression, MCF7 cells
were transfected with HIPK2 or K221R kinase defective
expression vectors. Levels of VEGF mRNA were analysed
by RT-PCR 24 h and 48 h post-transfection. As shown in
Figure 1A, levels of VEGF mRNA were downregulated by
HIPK2 but not by K221R mutant. Interestingly, the β-cat-
enin mRNA levels were not affected by HIPK2 overexpres-
sion (Figure 1A) while the β-catenin protein levels
decreased after HIPK2 but not after K221R overexpression
(Figure 1B). In agreement with β-catenin downregulation,
also the β-catenin transcription activity was impaired, as
suggested by decreased cyclin D1 levels after HIPK2 over-
expression (Figure 1B).

These results indicate that HIPK2 overexpression
decreased both VEGF mRNA and β-catenin protein levels
and β-catenin transcription activity. The possible link
between HIPK2 and β-catenin-mediated transcriptional
regulation of VEGF was next evaluated.

Effect of HIPK2 on VEGF and β-catenin levelsFigure 1
Effect of HIPK2 on VEGF and β-catenin levels. (A) MCF7 cells were transfected with HIPK2 or the K221R kinase defec-
tive mutant and 24 and 48 h after transfection VEGF and β-catenin (β-cat) mRNA levels were evaluated by reverse tran-
scriptase-PCR (RT-PCR) analysis. GAPDH was used as loading control. One representative experiment from three 
independent experiments was shown. (B) Cells were transfected as in (A) and 36 h after transfection cell extracts were sub-
jected to SDS-PAGE and immunoblotting was performed with anti-β-catenin and anti-cyclin D1 (cycl D1) antibodies. Anti-
tubulin was used as protein loading control. One representative experiment from three independent experiments was shown.
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HIPK2 suppressed the β-catenin-mediated transcriptional 
activation of VEGF
The effect of HIPK2 on β-catenin-mediated transcription
activation was first evaluated on artificial TCF/LEF-1 luci-
ferase reporter plasmid. To this end, H1299 cells were co-
transfected with TOPFlash reporter and a combination of
HIPK2 and β-catenin expression vectors. As shown in Fig-
ure 2A, HIPK2 strongly suppressed the β-catenin-induced
luciferase activity driven from TOPFlash reporter, as
recently shown [22]. Next, we evaluated whether HIPK2
could suppress the activity of the VEGF reporter induced
by β-catenin. To this aim, H1299 cells were co-transfected
with VEGF-luc reporter along with combinations of β-cat-

enin and HIPK2 or K221R expression vectors. As shown in
Figure 2B (upper panel), β-catenin induced VEGF luci-
ferase activity that was significantly suppressed by HIPK2
co-expression, while the K221R mutant failed to do so. In
agreement with these findings, VEGF mRNA levels
induced by β-catenin were strongly inhibited by HIPK2
co-transfection (Figure 2B, lower panel).

Altogether, these data show that HIPK2 inhibited β-cat-
enin-mediated VEGF transcription and that HIPK2 cata-
lytic activity was likely involved in this regulation.

Effect of HIPK2 on β-catenin-induced VEGF transcriptionFigure 2
Effect of HIPK2 on β-catenin-induced VEGF transcription. (A) Transcriptional activation of reporter plasmid express-
ing luciferase under the optimal TCF-responsive element (TOPFlash) was evaluated following co-transfection of H1299 cells 
with β-catenin and HIPK2 expression vectors. Thirty-six h after transfection, cells were assayed for luciferase activity. Results 
are expressed as Relative Luciferase Units (RLU) and represent the mean ± SD from three independent experiments per-
formed in duplicate. *p < 0.001 versus β-catenin alone. (B, upper panel) H1299 cells were co-transfected with VEGF-luc 
reporter construct along with β-catenin and HIPK2 or K221R mutant, for detection of luciferase activity as above. The data 
shown as fold of luciferase activity represent the mean ± SD from three independent experiments performed in duplicate. *p < 
0.001. (B, lower panel) VEGF mRNA levels were determined by RT-PCR analysis. GAPDH was used as loading control. One 
representative experiment from three independent experiments was shown. Densitometric analysis of VEGF levels was per-
formed and normalized values to GAPDH mRNA levels were indicated.
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Effect of HIPK2 on β-catenin proteasomal degradation
Western blot analysis was performed in order to test
whether the inhibition of HIPK2-dependent β-catenin
activity could depend by β-catenin protein destabiliza-
tion, as HIPK2 can regulate protein turnover through
phosphorylation-targeted/proteasomal degradation [5,6].
To this aim, 293 cells were co-transfected with constant
level of HA-tagged β-catenin or the S33Y mutant β-cat-
enin, with increasing amounts of HIPK2 protein. As
shown in Figure 3A, HIPK2 promoted reduction of β-cat-
enin levels in a concentration-dependent manner. In con-
trast, HIPK2 did not reduce the levels of the S33Y (Figure
2A), a mutant β-catenin, which is refractory to phosphor-
ylation by GSK3β and proteasomal degradation [24]. To
evaluate whether HIPK2 catalytic activity was involved in
β-catenin down-regulation, 293 cells were co-transfected
with β-catenin and HIPK2 or K221R expression vectors. As
shown in Figure 3B, HIPK2, but not K221R, efficiently
reduced β-catenin levels and likely its transcription activ-
ity, as also suggested by cyclin D1 downregulation (Figure
3B). Finally, HIPK2-induced degradation of co-trans-
fected β-catenin was reverted by cell treatment with the
proteasome inhibitor MG132 (Figure 3C).

Since HIPK2 is a potent activator of p53 function [3,4]
and it has been reported that activated p53 can promote
degradation of β-catenin [24], we next examined the β-
catenin protein levels by HIPK2 in p53/null cells; moreo-
ver, we also examined whether the β-catenin downregula-
tion required the activity of GSK3β. To this aim, we co-
expressed β-catenin and HIPK2 in H1299 cells (p53/null)
in the presence or absence of the proteasome inhibitor
MG132 or the specific GSK3β inhibitor LiCl [26]. As
shown in Figure 4, HIPK2 strongly reduced β-catenin lev-
els that were rescued by MG132 cell treatment, as shown
before; interestingly, LiCl treatment did not block the
ability of HIPK2 to lower β-catenin levels despite GSK3β
was strongly phosphorylated in serine 9 and therefore
inactive [26,27].

These data suggest that HIPK2 down-regulated β-catenin
levels through proteasomal degradation system, an effect
dependent on HIPK2 catalytic activity and independent of
p53 and GSK3β activities.

Discussion
The results presented in this study revealed a novel target
of HIPK2 oncosuppressor function that is VEGF, and
strengthened the role of HIPK2 as transcriptional repres-
sor of β-catenin-function. We showed that HIPK2 down-
regulated both endogenous VEGF mRNA levels and the
VEGF levels induced by β-catenin overexpression, in dif-
ferent tumor cells, highlighting interplay between HIPK2-
mediated β-catenin regulation and VEGF expression.
Thus, we have found that HIPK2 might induce β-catenin

proteasomal degradation and inhibit its transcription
activity.

The tumor progression is often dictated by increased vas-
cularity following VEGF up-regulation [19]. Thus, due to
its role in tumor angiogenesis VEGF is overexpressed in a
wide variety of human cancers [19,20]. However, angio-
genesis is not restricted to the advanced stages of cancer
but can also be observed early in premalignant stages of
tumor development. Thus, many molecular mechanisms
deregulated in cancer cells might act as VEGF inducers,
creating a challenge in tumor therapy for blocking VEGF
production and starve tumors [i.e., see ref. [28]]. Among
the mechanisms that can up-regulate VEGF in cancer is the

HIPK2 is involved in β-catenin proteasomal downregulationFigure 3
HIPK2 is involved in β-catenin proteasomal downreg-
ulation. (A) 293 cells were co-transfected with HA-β-cat-
enin or HA-S33Y β-catenin mutant along with increasing 
amount (1, 3, 5 μg) of HIPK2 expression vector. Thirty-six 
hours after transfection, total cell extracts were separated 
on denaturing SDS-PAGE and analyzed by immunoblotting 
(IB) with anti-HA antibody (to detect β-catenin) and anti-
tubulin (as protein loading control). (B, C) 293 cells were 
transfected with HA-β-catenin and HIPK2 or K221R expres-
sion vectors in the presence or absence of the proteasome 
inhibitor MG132 (2.5 μM) for 6 h and analyzed by immunob-
lotting with anti-HA (to detect β-catenin), anti-cyclin D1, and 
anti-tubulin (as protein loading control) antibodies.
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Wnt pathway and the β-catenin transcription factor [18].
Therefore, inhibiting the output of the Wnt pathway
remains a goal for therapeutical intervention for many
tumors [12].

Increasing evidence indicates that HIPK2 is able to modu-
late the transcription activity of a growing number of tran-
scription factors involved in cell growth and apoptosis
[reviewed in ref. [2]]. Recently, β-catenin activity has been
identified as target of HIPK2 transcriptional repression
[22], thus it was shown that HIPK2 suppresses β-catenin-
mediated activation of cyclin D1, controlling cell prolifer-
ation. In agreement with this report, here we found that
HIPK2 might downregulate the β-catenin target VEGF.
The β-catenin transcription activity was inhibited by
HIPK2-mediated proteasomal degradation, moreover we
showed that HIPK2 but not its catalytic inactive mutant
was able to downregulate β-catenin protein levels, sug-
gesting that HIPK2 catalytic activity might be involved in
β-catenin phosphorylation/degradation. HIPK2 has been
shown also by our studies to phosphorylate substrates for
either activating their apoptotic function, such as onco-
suppressor p53 [3,4], or promoting proteasomal degrada-
tion of antiapoptotic proteins such as MDM2 or CtBP

[5,6]. Thus, our effort is since several years to study the
molecular mechanisms underlying the role of HIPK2 in
restraining tumor progression in p53-dependent and
independent ways. However, whether HIPK2 acts directly
or indirectly inside multiprotein regulatory complexes, on
β-catenin phosphorylation and therefore activity remains
to be elucidated.

Collectively, the data presented in this study indicated
that HIPK2 could repress the β-catenin transcription activ-
ity and downregulate VEGF expression in tumor cells.
Constitutive activity of β-catenin can exert both prolifera-
tive and antiapoptotic effects [29] as well as VEGF expres-
sion favours tumor progression [18-21]. Hence, the
downregulation of β-catenin by HIPK2, also in p53/null
cells, is likely to contribute to the antiproliferative effects
of HIPK2. However, the existence of multiple different
pathways for both β-catenin and VEGF regulation may
provide a fail-safe mechanism in case one of the compo-
nents along either of the pathways becomes inactivated.
Many different mechanisms can contribute to VEGF up-
regulation and in this regard we have recently found that
HIPK2 can regulate the HIF-1α-induced VEGF expression,
inhibiting tumor angiogenesis (L.N. and G.D.O. unpub-
lished results). In conclusion our findings support the
potential role of HIPK2 as oncosuppressor and might give
important contributions for the development of novel
combinatory anti-tumoral therapeutical approaches
focused to deal with tumor angiogenesis.
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